Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.6 - Integral Tables and Computer Algebra Systems - Exercises 8.6 - Page 481: 19

Answer

$$\frac{x^{3}}{3} \tan ^{-1} x-\frac{x^{2}}{6}+\frac{1}{6} \ln \left(1+x^{2}\right)+C$$

Work Step by Step

Use the formula $$\int x^{n} \tan ^{-1} a x d x=\frac{x^{n+1}}{n+1} \tan ^{-1} a x-\frac{a}{n+1} \int \frac{x^{n+1} d x}{1+a^{2} x^{2}}, \quad n \neq-1$$ with $n=2,\ a=1$ \begin{align*} \int x^{2} \tan ^{-1} x d x&=\frac{x^{2+1}}{2+1} \tan ^{-1} x-\frac{1}{2+1} \int \frac{x^{2+1}}{1+x^{2}} d x\\ &=\frac{x^{3}}{3} \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x\\ &=\frac{x^{3}}{3} \tan ^{-1} x-\frac{1}{3} \left(\int x d x-\int \frac{x d x}{1+x^{2}}\right) \\ &=\frac{x^{3}}{3} \tan ^{-1} x-\frac{1}{3} \left(\frac{x^{2}}{2}-\frac{1}{2} \ln \left(1+x^{2}\right)\right)+C\\ &=\frac{x^{3}}{3} \tan ^{-1} x-\frac{x^{2}}{6}+\frac{1}{6} \ln \left(1+x^{2}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.