Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.6 - Integral Tables and Computer Algebra Systems - Exercises 8.6 - Page 481: 30


$2\sqrt x\cos^{-1}\sqrt x-2\sqrt{1-x}+C$

Work Step by Step

Let $I=\int\dfrac{\cos^{-1}\sqrt x}{\sqrt x}dx$ Suppose $u=\sqrt x \implies du=\dfrac{1}{2\sqrt x}dx $ or, $\dfrac{1}{\sqrt x}dx=2du$ So, $I=2 \space \int\cos^{-1}udu \\=2 (u\cos^{-1}u-(1/1)\sqrt{1-u^2}+C) \\=2\sqrt x\cos^{-1}\sqrt x-2\sqrt{1-x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.