Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 7

Answer

$a.\quad 0$ $ b.\quad \displaystyle \frac{1}{8}$

Work Step by Step

$a.$ Applying th.7, let $u=g(r)=4+r^{2}$ (a continuous function). Then, $\displaystyle \quad du=g'(r)dt=2rdr,\qquad rdr=\frac{du}{2}$ and, the borders change to $g(-1)=5$ and $g(1)=5$. $\displaystyle \int_{0}^{1}\frac{5r}{(4+r^{2})^{2}}dr=\int_{5}^{5}\frac{5}{u^{2}}\cdot\frac{du}{2}$ $=0$ (zero width integral) $b.$ Using the same substitution, $u=g(r)=4+r^{2}, \ \ du=2rdr$ here, the borders change to $g(0)=4$ and $g(1)=5$. $\displaystyle \int_{0}^{1}\frac{5r}{(4+r^{2})^{2}}dr=\int_{4}^{5}\frac{5}{u^{2}}\cdot\frac{du}{2}=\frac{5}{4}\int_{4}^{5}u^{-2}du$ $=\displaystyle \frac{5}{4}\left[ \frac{u^{-2+1}}{-2+1} \right]_{4}^{5}$ $=\displaystyle \frac{5}{4}\left[ -u^{-1} \right]_{4}^{5}$ $=\displaystyle \frac{5}{4}(-\frac{1}{5}+\frac{1}{4})$ $=\displaystyle \frac{5}{4}\cdot\frac{1}{20}$ $=\displaystyle \frac{1}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.