Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 17

Answer

$\displaystyle \frac{3}{4}$

Work Step by Step

Applying th.7, let $ u=g(\theta)=\cos 2\theta$ (a continuous function). Then, $ g'(\theta)=-\sin 2\theta\cdot 2=-2\sin 2\theta$ Then, $\quad \left[\begin{array}{ll} u=\cos 2\theta, & du=g'(\theta) d\theta\\ & du=-2\sin 2\theta d\theta\\ & \sin 2\theta d\theta=\dfrac{du}{-2} \end{array}\right]$, and, the borders change to $g(0)=\cos 0=1$ and $\displaystyle \quad g(\pi/6)=(\cos\pi/3)=\frac{1}{2}$ $\displaystyle \int_{0}^{\pi/6}\cos^{-3}2\theta\cdot\sin 2\theta d\theta=\int_{1}^{1/2}u^{-3}\cdot\frac{du}{-2} =-\frac{1}{2}\int_{1}^{1/2}u^{-3}du$ $=-\displaystyle \frac{1}{2}\left[ \frac{u^{-3+1}}{-3+1} \right]_{1}^{1/2}$ $=-\displaystyle \frac{1}{2}\left[ \frac{u^{-2}}{-2} \right]_{1}^{1/2}$ $=\displaystyle \frac{1}{4}\left[ \frac{1}{u^{2}} \right]_{1}^{1/2}$ $=\displaystyle \frac{1}{4}\cdot(4-1)$ =$\displaystyle \frac{3}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.