Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 18

Answer

$12$

Work Step by Step

Applying th.7, let $u=g(\theta)=\tan(\theta/6)$ (a continuous function). Then, $g'(\displaystyle \theta)=\sec^{2}(\theta/6)\cdot\frac{1}{6}=\frac{1}{6}\sec^{2}(\theta/6)$ Then, $\quad \left[\begin{array}{ll} u=\tan(\theta/6) & du=g'(\theta) d\theta\\ \cot^{5}(\theta/6)=\frac{1}{u^{5}}=u^{-5} & du=\frac{1}{6}\sec^{2}(\theta/6)d\theta\\ & \sec^{2}(\theta/6)d\theta=6du \end{array}\right]$, and, the borders change to $g(\displaystyle \pi)=\tan\frac{\pi}{6}=\frac{\sqrt{3}}{3}$ and $\displaystyle \quad g(3\pi/2)=\tan\frac{\pi}{4}=1$ $\displaystyle \int_{\pi}^{3\pi/2}\cot^{5}(\theta/6)\cdot\sec^{2}(\theta/6)=\int_{\sqrt{3}/3}^{1}u^{-5}\cdot(6du) =6\int_{\sqrt{3}/3}^{1}u^{-5}du$ $=6\displaystyle \left[ \frac{u^{-5+1}}{-5+1} \right]_{\sqrt{3}/3}^{1}$ $=6\displaystyle \left[ \frac{u^{-4}}{-4} \right]_{\sqrt{3}/3}^{1}$ $=-\displaystyle \frac{3}{2}\left[ \frac{1}{u^{4}} \right]_{\sqrt{3}/3}^{1}$ $=-\displaystyle \frac{3}{2}(1- \frac{3^{4}}{(\sqrt{3})^{4}})$ $=-\displaystyle \frac{3}{2}(1- \frac{3^{4}}{3^{2}})$ $=-\displaystyle \frac{3}{2}(-8)$ =$12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.