Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 28

Answer

$2$

Work Step by Step

On the interval $[-\displaystyle \pi,-\frac{\pi}{2}]$, the graph of $y=f(x)=\displaystyle \frac{\pi}{2}(\cos x)[\sin(\pi+\pi\sin x)]$ is below the graph of $y=0$, and on $[-\displaystyle \frac{\pi}{2},0], y=f(x)$ is above $y=0$ The area between the two graphs over [a,b], where one graph is above the other, is given with $\displaystyle \int_{a}^{b}(y_{above}-y_{below})dx$. $A=\displaystyle \int_{-\pi}^{-\pi/2}[0- f(x)]dx+\int_{-\pi}^{-\pi/2}[f(x)-0]dx$ $=-\displaystyle \int_{-\pi}^{-\pi/2}f(x)dx+\int_{-\pi/2}^{0}f(x)dx$ $A=-I_{1}+I_{2}$ $f(x)=\displaystyle \frac{\pi}{2}(\cos x)[\sin(\pi+\pi\sin x)]$ Apply substitution (in both integrals): $\left[\begin{array}{lll} u=\pi+\pi\sin x & & du=\pi\cos xdx\\ & & (\cos x)dx=\frac{du}{\pi}\\ \text{Borders:} & & \\ \text{Integral }I_{1} & & \\ x=-\pi & \rightarrow & u=\pi+\pi(0)=\pi\\ x=-\pi/2 & \rightarrow & u=\pi+\pi(-1)=0\\ \text{Integral }I_{2} & & \\ x=-\pi/2 & \rightarrow & u=0\\ x=0 & \rightarrow & u=\pi+\pi(0)=\pi \end{array}\right]$ $A=-\displaystyle \int_{\pi}^{0}\frac{\pi}{2}(\sin u)(\frac{1}{\pi}du)+\int_{0}^{\pi}\frac{\pi}{2}(\sin u)(\frac{1}{\pi}du)$ Reverse the borders in the first integral, $A=\displaystyle \int_{0}^{\pi}\frac{\pi}{2}(\sin u)(\frac{1}{\pi}du)+\int_{0}^{\pi}\frac{\pi}{2}(\sin u)(\frac{1}{\pi}du) =2\cdot\int_{0}^{\pi}\frac{\pi}{2}(\sin u)(\frac{1}{\pi}du)$ $=2\displaystyle \int_{0}^{\pi}(\sin u)(du)$ $=[-\cos u]_{0}^{\pi}$ $=(-\cos\pi)-(-\cos 0)$ $=-(-1)-(-1)$ $=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.