Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 23

Answer

$\displaystyle \frac{\pi}{3}$

Work Step by Step

Applying th.7, let $u=g(\theta)=\theta^{3/2} \quad$ (a continuous function). Then, $g'(\displaystyle \theta)=\frac{3}{2}\theta^{1/2}$ Then, $\quad \left[\begin{array}{ll} u=y^{3}+6y^{2}-12y+9 & du=g'(\theta) dy\\ & du=\frac{3}{2}\theta^{1/2}d\theta \\ & \sqrt{\theta}d\theta=\frac{2du}{3} \end{array}\right]$, and, the borders change to $g(0)=0$ and $\quad g(\pi^{2/3})=\pi$ $\displaystyle \int_{0}^{\pi^{2/3}}\sqrt{\theta}\cos^{2}(\theta^{3/2})d\theta=\int_{0}^{\pi}\cos^{2}u(\frac{2du}{3})$ $=\displaystyle \frac{2}{3}\int_{0}^{\pi}\cos^{2}udu$ Using the double angle formula for $\cos 2u$ $\cos 2u=\cos^{2}u-\sin^{2}u=\cos^{2}u-(1-\cos^{2}u)=2\cos^{2}u-1$, We transform $\displaystyle \cos^{2}u= \frac{1}{2}(\cos 2u+1) $ $=\displaystyle \frac{2}{3}\cdot\frac{1}{2}\int_{0}^{\pi} (\cos 2u+1) du$ $=\displaystyle \frac{1}{3}\int_{0}^{\pi} (\cos 2u+1) du=\frac{1}{3}\left[\int_{0}^{\pi} \cos 2udu+ \int_{0}^{\pi}du\right]$ For the first integral, substitute: $\left[\begin{array}{ll} t=2u, & dt=2du\\ & du=dt/2 \\ u=0\rightarrow t=0, & u=\pi\rightarrow t=2\pi \end{array}\right]$ $=\displaystyle \frac{1}{3}\left[\int_{0}^{2\pi} \cos t(\frac{dt}{2})+ \int_{0}^{\pi}du\right]$ $=\displaystyle \frac{1}{6}\int_{0}^{2\pi} \cos tdt +\frac{1}{3}\left[ u \right]_{0}^{\pi}$ $=\displaystyle \frac{1}{6}\left[ \sin t \right]_{0}^{2\pi}+\frac{1}{3}(\pi-0)$ $=\displaystyle \frac{1}{6}(0)+\frac{\pi}{3}$ $=\displaystyle \frac{\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.