Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises 5.6 - Page 303: 6

Answer

$a.\quad \displaystyle \frac{45}{8} \\ b.\quad -\displaystyle \frac{45}{8}$

Work Step by Step

$a.$ Applying th.7, let $u=g(t)=t^{2}+1$ (a continuous function). Then, $\displaystyle \quad du=g'(t)dt=2tdt,\qquad dt=\frac{du}{2}$ and, the borders change to $g(0)=1$ and $g(\sqrt{7})=8$. $\displaystyle \int_{0}^{\sqrt{7}}t(t^{2}+1)^{1/3}dt=\int_{1}^{8}u^{1/3}\cdot\frac{u}{2}du$ $=\displaystyle \frac{1}{2}\left[ \frac{u^{1+1/3}}{1+1/3} \right]_{1}^{8}$ $=\displaystyle \frac{1}{2}\left[ \frac{u^{4/3}}{4/3} \right]_{1}^{8}$ $=\displaystyle \frac{1}{2}\cdot\frac{3}{4}(8^{4/3}-1^{4/3})$ $=\displaystyle \frac{3}{8}((2^{3})^{4/3}-1)$ $=\displaystyle \frac{3}{8}(2^{4}-1)$ $=\displaystyle \frac{3}{8}\cdot 15 =\frac{45}{8}$ $b.$ Applying th.7, let $u=g(t)=t^{2}+1$ (a continuous function). Then, $\displaystyle \quad du=g'(t)dt=2tdt,\qquad dt=\frac{du}{2}$ and, the borders change to $g(-\sqrt{7})=8$ and $g(0)=1$. $\displaystyle \int_{-\sqrt{7}}^{0}t(t^{2}+1)^{1/3}dt=\int_{8}^{1}u^{1/3}\cdot\frac{u}{2}du$ $=\displaystyle \frac{1}{2}\left[ \frac{u^{1+1/3}}{1+1/3} \right]_{8}^{1}$ $=\displaystyle \frac{1}{2}\left[ \frac{u^{4/3}}{4/3} \right]_{8}^{1}$ $=\displaystyle \frac{1}{2}\cdot\frac{3}{4}(1-8^{4/3})$ $=\displaystyle \frac{3}{8}(1-(2^{3})^{4/3})$ $=\displaystyle \frac{3}{8}(1-2^{4})$ $=\displaystyle \frac{3}{8}\cdot(-15) $ $=-\displaystyle \frac{45}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.