Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 24

Answer

Ans. $\frac{1}{√2}+i\frac{1}{√2}$, $\frac{1}{√2}+i\frac{1}{√2}$, $\frac{-1}{√2}+i\frac{-1}{√2}$, $\frac{-1}{√2}+i\frac{-1}{√2}$

Work Step by Step

Given:-$x^4+1=0$ $x^4=i^2$ $x^2=+i,-i$ $x=+i^{1/2}, -i^{1/2}$ We can write i as i=cos(4k+1) π/2+isin(4k+1) π/2 $i^{1/2}=cos(4k+1) π/4+isin(4k+1) π/4$ Putting value of k=0, 1 We get +($\frac{1}{√2}+i\frac{1}{√2}$), -($\frac{1}{√2}+i\frac{1}{√2}$) Therefore $x=+i^{1/2}, -i^{1/2}$ x have values x=$\frac{1}{√2}+i\frac{1}{√2}$, $\frac{1}{√2}+i\frac{1}{√2}$, $\frac{-1}{√2}+i\frac{-1}{√2}$, $\frac{-1}{√2}+i\frac{-1}{√2}$ Ans.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.