Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 17

Answer

Ans. 1, $\frac{-1}{2}+\frac{√3i}{2}$, $\frac{-1}{2}+\frac{-√3i}{2}$

Work Step by Step

Given:- z=1 $ z^{1/3}=1^{1/3}$ As we know that $ z^{1/3}=r^{1/3}[cos{(\frac{θ}{n}+\frac{2πk}{n})}+isin({\frac{θ}{n}+\frac{2πk}{n})}]$ Put θ=π/2 We get =$cos\frac{2kπ}{3}+isin\frac{2kπ}{3}$ After putting k=0, 1,2 We get =$cos0+isin0$, $cos\frac{2π}{3}+isin\frac{2π}{3}$, $cos\frac{4π}{3}+isin\frac{4π}{3}$ =1, $\frac{-1}{2}+\frac{√3i}{2}$, $\frac{-1}{2}+\frac{-√3i}{2}$ Ans.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.