Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 21

Answer

$\color{blue}{\pm\sqrt{1\pm i\sqrt{3}}}$ or $\color{blue}{\dfrac{\sqrt{6}}{2} +i\dfrac{\sqrt{2}}{2},\ -\dfrac{\sqrt{6}}{2} -i\dfrac{\sqrt{2}}{2},\ \dfrac{\sqrt{6}}{2} -i\dfrac{\sqrt{2}}{2},\ -\dfrac{\sqrt{6}}{2} +i\dfrac{\sqrt{2}}{2}}$

Work Step by Step

Since we can rewrite the given equation as $(z^2)^2 - 2(z^2) +4=0$, if we let $u=z^2$ then the given equation becomes $u^2-2u+4=0$ and may be considered as a quadratic equation in $u$. We can then use the quadratic equation to find solutions for $u$. $\begin{align*} u &= \frac{-(-2) \pm \sqrt{(-2)^2-4(1)(4)}}{2(1)} \\ &= \frac{2\pm \sqrt{4-16}}{2} \\ &= \frac{2\pm \sqrt{-12}}{2} \\ &= \frac{2\pm 2i\sqrt{3}}{2} \\ u &= 1 \pm i\sqrt{3} \end{align*}$ Since $u=z^2$, $\begin{align*} z^2 &= 1 \pm i\sqrt{3} \\ z &= \color{blue}{\pm \sqrt{1 \pm i\sqrt{3}}} \end{align*}$ The four roots may also be obtained by using DeMoivre's Theorem to extract the square roots of each value for $u$. $u = 1\pm i\sqrt{3} = x+ iy \implies x=1, y=\pm\sqrt{3}$ $r = \sqrt{x^2+y^2} = \sqrt{1^2 +(\sqrt{3})^2}= \sqrt{1+3} = \sqrt{4} = 2$ $\tan\theta = \pm y/x = \pm \sqrt{3}/1 = \pm \sqrt{3} \implies \theta = \pm\pi/3$ $\begin{align*} u &= r\,\text{cis}\,\theta \\ u &= 2\,\text{cis}\,(\pi/3), \color{blue}{2\,\text{cis}\,(-\pi/3)} \\ z^2 &= 2\,\text{cis}\, (\pi/3), \color{blue}{2\,\text{cis}\,(-\pi/3)} \\ z &= \sqrt{2}\,\text{cis}\,(\pi/6 + k\pi), \color{blue}{\sqrt{2}\,\text{cis}\,(-\pi/6+ k\pi)},\ k=0,1 \\ &= \sqrt{2}\,\text{cis}\,(\pi/6), \sqrt{2}\,\text{cis}\,(7\pi/6), \color{blue}{\sqrt{2}\,\text{cis}\,(-\pi/6), \sqrt{2}\,\text{cis}\,(5\pi/6)} \\ &= \sqrt{2}(\cos(\pi/6) + i\sin(\pi/6)), \sqrt{2}(\cos(7\pi/6) +i\sin(7\pi/6)), \\ & \qquad\qquad \color{blue}{\sqrt{2}(\cos(-\pi/6) +i\sin(-\pi/6)), \sqrt{2}(\cos(5\pi/6) + i\sin(5\pi/6))} \\ &= \sqrt{2}(\sqrt{3}/2 + i(1/2)), \sqrt{2}(-\sqrt{3}/2 - i(1/2)), \\ & \qquad\qquad \color{blue}{\sqrt{2}(\sqrt{3}/2 - i(1/2)), \sqrt{2}(-\sqrt{3}/2 + i(1/2))} \\ z &= \sqrt{6}/2 +i(\sqrt{2}/2)), -\sqrt{6}/2 -i(\sqrt{2}/2)), \\ & \qquad\qquad \color{blue}{\sqrt{6}/2 -i(\sqrt{2}/2)), -\sqrt{6}/2 +i(\sqrt{2}/2))} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.