Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 2

Answer

Ans. a. $x=-7/3, y=-24$ b. $x=2/5, y=-1/5$ c. $x=-1, y=0$

Work Step by Step

Given: a. $ (3+4i)^2-2(x-iy) =x+iy$ $ (9+24i+16i^2) -2x+2iy=x+iy$ $ 9+24i+16(-1)=(2x + x)+ (-2iy + iy)$ $ (9-16)+24i = 3x- iy$ $-7+24i=3x-iy$ By comparing corresponding real and pure imaginary parts of the LHS and RHS, $-7 = 3x$ and $24i = -yi$. Thus, $x=-7/3 ,y=-24$ Ans. b. $ (\frac{1+i}{1-i})^2 + \frac{1}{x+iy} =1+i$ $ (\frac{1+i}{1-i}×\frac{1+i}{1+i})^2+\frac{1}{x+iy} =1+i$ $ \left(\frac{(1+i)^2}{(1-i)(1+i)}\right)^2+\frac{1}{x+iy} =1+i$ $ \left(\frac{1+2i+i^2}{1-i^2}\right)^2+\frac{1}{x+iy} =1+i$ $ \left(\frac{1+2i+(-1)}{1-(-1)}\right)^2+\frac{1}{x+iy} =1+i$ $\left(\frac{2i}{2}\right)^2+\frac{1}{x+iy} =1+i$ $i^2+\frac{1}{x+iy} =1+i$ $-1+\frac{1}{x+iy} =1+i$ $\frac{1}{x+iy} =2+i$ $x+iy =\frac{1}{2+i}$ $x+iy =\frac{1}{2+i}×\frac{2-i}{2-i}$ $x+iy=\frac{2-i}{2^2-i^2}$ $x+iy=\frac{2-i}{4-(-1)}$ $x+iy =\frac{2-i}{5}$ $x+iy=\frac{2}{5}+\left(-\frac{1}{5}\right)i$ By comparing corresponding real and pure imaginary parts of the LHS and RHS, $x=2/5, y=-1/5$ c. $(3-2i)(x+iy)=2(x-2yi)+(2i-1) $ $3x+3yi-2xi-2yi^2=2x-4yi+2i-1$ $3x+3yi-2xi-2y(-1)=2x-4yi+2i-1$ $3x+3yi-2xi+2y=2x-4yi+2i-1$ $(3x+2y)+(-2x+3y)i=(2x-1) +(2-4y)i$ On comparing LHS and RHS and equating corresponding real and pure imaginary parts, $3x+2y=2x-1,\ -2x+3y=2-4y$ $x+2y=-1,\ -2x+7y=2$ After solving the equations above simultaneously (as a linear system of two equations in two unknowns, $x$ and $y$), $x=-1 , y=0$ Ans.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.