Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 19

Answer

Ans. -√2(1+i), √2(1+i), 2i

Work Step by Step

Given:-z=-8i $ z^{1/3}=(-8i)^{1/3}=-2i^{1/3}$ As we can write i=$cosπ/2+isinπ/2$ Also $ i=[cos{(\frac{π}{2}+{2πk})}+isin({\frac{π}{2}+{2πk})}]$ $ -2i^{1/3}=-2[cos(4k+1)π/6+isin(4k+1)π/6]$ After putting k=0, 1,2 We get = -2$[cos\frac{π}{6}+isin\frac{π}{6}]$,-2$[cos\frac{5π}{6}+isin\frac{5π}{6}]$, -2$[cos\frac{3π}{2}+isin\frac{3π}{2}]$ =-√2(1+i), √2(1+i), 2i Ans.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.