Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 16

Answer

Ans. Sin4$\theta$=$8cos^3θsinθ-4cosθsinθ$

Work Step by Step

Given:- By De moivre's theorem $(cosθ+isinθ)^n=(cosnθ+sinnθ) $ ~Eq.1 If n=4 $(cosθ+isinθ)^4$=$(cos^2θ+2isinθcosθ-sin^2θ)(cos^2θ+2isinθcosθ-sin^2θ)$ =$(cos^4θ-6sin^2θcos^2θ+sin^4θ)+i(4sinθcos^3θ-4sin^3θcosθ)$ After comparing of Eq.1 LHS and RHS we get Sin4$\theta$=$(4sinθcos^3θ-4sin^3θcosθ)$ Put $sin^2θ=1-cos^2θ$ in the above equation =$8cos^3θsinθ-4cosθsinθ$ Ans.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.