Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.7 - Complex Numbers - Exercises A.7 - Page AP-34: 12

Answer

Ans. $\color{blue}{\dfrac{1+i}{1-i} =e^{i\pi/2}}$

Work Step by Step

Given: $\frac{1+i}{1-i}$ Rationalizing the denominator term = $\frac{1+i}{1-i}$×$\frac{1+i}{1+i}$ = $\frac{1+2i+i^2}{1^2-i^2}$ = $\frac{2i}{i}$ = $i$ = $0 +i$ = $x+iy$, where $x=0$ and $y=1$ = $re^{i\theta}$, where $\qquad \vert r\vert = \sqrt{x^2+y^2} = \sqrt{0^2+1^2} = \sqrt{0+1} = \sqrt{1} = 1\implies \color{blue}{r = 1} \ge 0$ and $\qquad \tan(\theta) = y/x = 1/0 = 0,\theta\in[-\pi,\pi] \implies \color{blue}{\theta = \pi/2}$. Thus, $\dfrac{1+i}{1-i}$ = $i$ = $e^{i\pi/2}$ Ans. $\color{blue}{\dfrac{1+i}{1-i} = e^{i\pi/2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.