Answer
$3 \ln (3)-2$
Work Step by Step
Here, we have: $y=e^{-x}$ and $y=3$
Suppose that $y=y \implies e^{-x}=3$
or, $\ln e^{-x} =\ln 3 \implies x=-\ln (3)$
Here, the area can be expressed as: $A=\int_{-\ln 3}^{0} (3-e^{-x}) \ dx$
or, $=[3x+e^{-x}]_{-\ln (3)}^{0}$
or, $=[3(0)+e^{-0}]-[3(-\ln (3))+e^{-(-\ln (3))}]$
Therefore, the required area is: $Area=3 \ln (3)-2$