Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 23

Answer

$$A = \frac{2}{3}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = {\left( {x - 1} \right)^2},{\text{ }}g\left( x \right) = - {\left( {x - 1} \right)^2} \cr & {\text{From the graph shown below}} \cr & f\left( x \right) \geqslant g\left( x \right){\text{ on the interval }}0 \leqslant x \leqslant 1 \cr & {\text{The area is given by}} \cr & A = \int_0^1 {\left[ {{{\left( {x - 1} \right)}^2} + {{\left( {x - 1} \right)}^2}} \right]} dx \cr & A = 2\int_0^1 {{{\left( {x - 1} \right)}^2}} dx \cr & {\text{ Integrate}} \cr & A = 2\left[ {\frac{{{{\left( {x - 1} \right)}^3}}}{3}} \right]_0^1 \cr & A = \frac{2}{3}\left[ {{{\left( {x - 1} \right)}^3}} \right]_0^1 \cr & {\text{Simplifying}} \cr & A = \frac{2}{3}\left[ {{{\left( {1 - 1} \right)}^3} - {{\left( {0 - 1} \right)}^3}} \right] \cr & A = \frac{2}{3}\left( 1 \right) \cr & A = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.