Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 30

Answer

$$A = \frac{8}{{15}}$$

Work Step by Step

$$\eqalign{ & {\text{From the graph}} \cr & {\text{We let: }}f\left( x \right) = {x^4} - {x^2}{\text{ and }}g\left( x \right) = {x^2} - {x^4} \cr & {\text{ }}g\left( x \right) \geqslant f\left( x \right){\text{ on the interval }}\left[ { - 1,1} \right] \cr & {\text{Using the symmetry of the graph we can define the area as}} \cr & A = 2\int_0^1 {\left[ {g\left( x \right) - f\left( x \right)} \right]} dx \cr & A = 2\int_0^1 {\left[ {\left( {{x^2} - {x^4}} \right) - \left( {{x^4} - {x^2}} \right)} \right]} dx \cr & A = 2\int_0^1 {\left( {{x^2} - {x^4} - {x^4} + {x^2}} \right)} dx \cr & A = 2\int_0^1 {\left( {2{x^2} - 2{x^4}} \right)} dx \cr & {\text{Integrate}} \cr & A = 2\left[ {\frac{{2{x^3}}}{3} - \frac{{2{x^5}}}{5}} \right]_0^1 \cr & A = 2\left[ {\frac{{2{{\left( 1 \right)}^3}}}{3} - \frac{{2{{\left( 1 \right)}^5}}}{5}} \right] - 2\left[ {\frac{{2{{\left( 0 \right)}^3}}}{3} - \frac{{2{{\left( 0 \right)}^5}}}{5}} \right] \cr & A = 2\left( {\frac{4}{{15}}} \right) - 2\left( 0 \right) \cr & A = \frac{8}{{15}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.