Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 33

Answer

$$A = 32$$

Work Step by Step

$$\eqalign{ & {\text{From the graph}} \cr & {\text{We let: }}f\left( x \right) = 2{x^2} + 10x - 5{\text{ and }}g\left( x \right) = - {x^2} + 4x + 4 \cr & {\text{ }}g\left( x \right) \geqslant f\left( x \right){\text{ on the interval }}\left[ { - 3,1} \right] \cr & {\text{The area enclosed can define as}} \cr & A = \int_{ - 3}^1 {\left[ {g\left( x \right) - f\left( x \right)} \right]} dx \cr & A = \int_{ - 3}^1 {\left[ {\left( { - {x^2} + 4x + 4} \right) - \left( {2{x^2} + 10x - 5} \right)} \right]} dx \cr & A = \int_{ - 3}^1 {\left( { - {x^2} + 4x + 4 - 2{x^2} - 10x + 5} \right)} dx \cr & A = \int_{ - 3}^1 {\left( { - 3{x^2} - 6x + 9} \right)} dx \cr & {\text{Integrate}} \cr & A = \left[ { - {x^3} - 3{x^2} + 9x} \right]_{ - 3}^1 \cr & A = \left[ { - {{\left( 1 \right)}^3} - 3{{\left( 1 \right)}^2} + 9\left( 1 \right)} \right] - \left[ { - {{\left( { - 3} \right)}^3} - 3{{\left( { - 3} \right)}^2} + 9\left( { - 3} \right)} \right] \cr & A = \left( { - 1 - 3 + 9} \right) - \left( {81 - 27 - 27} \right) \cr & A = 5 + 27 \cr & A = 32 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.