Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 32

Answer

$$A = \frac{8}{3}$$

Work Step by Step

$$\eqalign{ & {\text{From the graph}} \cr & {\text{We let: }}f\left( x \right) = - {x^2} + 4x - 4{\text{ and }}g\left( x \right) = {x^2} - 4x + 2 \cr & {\text{ }}f\left( x \right) \geqslant g\left( x \right){\text{ on the interval }}\left[ {1,3} \right] \cr & {\text{The area enclosed can define as}} \cr & A = \int_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & A = \int_1^3 {\left[ {\left( { - {x^2} + 4x - 4} \right) - \left( {{x^2} - 4x + 2} \right)} \right]} dx \cr & A = \int_1^3 {\left( { - {x^2} + 4x - 4 - {x^2} + 4x - 2} \right)} dx \cr & A = \int_1^3 {\left( { - 2{x^2} + 8x - 6} \right)} dx \cr & {\text{Integrate}} \cr & A = \left[ { - \frac{{2{x^3}}}{3} + 4{x^2} - 6x} \right]_1^3 \cr & A = \left[ { - \frac{{2{{\left( 3 \right)}^3}}}{3} + 4{{\left( 3 \right)}^2} - 6\left( 3 \right)} \right] - \left[ { - \frac{{2{{\left( 1 \right)}^3}}}{3} + 4{{\left( 1 \right)}^2} - 6\left( 1 \right)} \right] \cr & A = 0 - \left( { - \frac{8}{3}} \right) \cr & A = \frac{8}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.