Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 24

Answer

$$A = \frac{{10235}}{{66}}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = {x^2}{\left( {{x^3} + 1} \right)^{10}},{\text{ }}g\left( x \right) = - x{\left( {{x^2} + 1} \right)^{10}} \cr & {\text{From the graph shown below}} \cr & f\left( x \right) \geqslant g\left( x \right){\text{ on the interval }}0 \leqslant x \leqslant 1 \cr & {\text{The area is given by}} \cr & A = \int_0^1 {\left[ {{x^2}{{\left( {{x^3} + 1} \right)}^{10}} + x{{\left( {{x^2} + 1} \right)}^{10}}} \right]} dx \cr & A = \int_0^1 {\left[ {{x^2}{{\left( {{x^3} + 1} \right)}^{10}} + x{{\left( {{x^2} + 1} \right)}^{10}}} \right]} dx \cr & {\text{ Integrate}} \cr & A = \left[ {\frac{1}{3}\left[ {\frac{{{{\left( {{x^3} + 1} \right)}^{11}}}}{{11}}} \right] + \frac{1}{2}\left[ {\frac{{{{\left( {{x^2} + 1} \right)}^{11}}}}{{11}}} \right]} \right]_0^1 \cr & A = \left[ {\frac{{{{\left( {{x^3} + 1} \right)}^{11}}}}{{33}} + \frac{{{{\left( {{x^2} + 1} \right)}^{11}}}}{{22}}} \right]_0^1 \cr & A = \left[ {\frac{{{{\left( {{1^3} + 1} \right)}^{11}}}}{{33}} + \frac{{{{\left( {{1^2} + 1} \right)}^{11}}}}{{22}}} \right] - \left[ {\frac{{{{\left( {{0^3} + 1} \right)}^{11}}}}{{33}} + \frac{{{{\left( {{0^2} + 1} \right)}^{11}}}}{{22}}} \right] \cr & {\text{Simplifying}} \cr & A = \frac{{{2^{11}}}}{{33}} + \frac{{{2^{11}}}}{{22}} - \frac{1}{{33}} - \frac{1}{{22}} \cr & A = \frac{{10240}}{{66}} - \frac{5}{{66}} \cr & A = \frac{{10235}}{{66}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.