Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 14

Answer

$$A = \frac{7}{3}$$

Work Step by Step

$$\eqalign{ & {\text{From the graph}} \cr & {\text{We let: }}f\left( x \right) = - \left| x \right|{\text{ and }}g\left( x \right) = {x^2} - 2 \cr & {\text{ }}f\left( x \right) \geqslant {\text{ }}g\left( x \right)\,{\text{ on the interval }}\left[ { - 1,1} \right] \cr & A = \int_{ - 1}^1 {\left( { - \left| x \right| - \left[ {{x^2} - 2} \right]} \right)dx} \cr & {\text{Using the symmetry of the graph we can define the area as}} \cr & A = 2\int_0^1 {\left( { - x - \left[ {{x^2} - 2} \right]} \right)} dx \cr & A = 2\int_0^1 {\left( { - x - {x^2} + 2} \right)} dx \cr & {\text{Integrate}} \cr & A = 2\left[ { - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} + 2x} \right]_0^1 \cr & A = 2\left[ { - \frac{{{{\left( 1 \right)}^2}}}{2} - \frac{{{{\left( 1 \right)}^3}}}{3} + 2\left( 1 \right)} \right] - 2\left[ { - \frac{{{{\left( 0 \right)}^2}}}{2} - \frac{{{{\left( 0 \right)}^3}}}{3} + 2\left( 0 \right)} \right] \cr & A = 2\left[ {\frac{7}{6}} \right] - 2\left[ 0 \right] \cr & A = \frac{7}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.