Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.2 - Area between Two Curves and Applications - Exercises - Page 1031: 18

Answer

$$A = \frac{{16}}{3}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = {x^2} - 4x + 2,{\text{ }}g\left( x \right) = - {x^2} + 4x - 4 \cr & {\text{From the graph shown below}} \cr & f\left( x \right) \geqslant g\left( x \right){\text{ on the interval }}0 \leqslant x \leqslant 1 \cr & g\left( x \right) \geqslant f\left( x \right){\text{ on the interval 1}} \leqslant x \leqslant 3 \cr & {\text{The area is given by}} \cr & A = \int_0^1 {\left[ {\left( {{x^2} - 4x + 2} \right) - \left( { - {x^2} + 4x - 4} \right)} \right]} dx \cr & {\text{ }} + \int_1^3 {\left[ {\left( { - {x^2} + 4x - 4} \right) - \left( {{x^2} - 4x + 2} \right)} \right]} dx \cr & A = \int_0^1 {\left( {{x^2} - 4x + 2 + {x^2} - 4x + 4} \right)} dx \cr & {\text{ }} + \int_1^3 {\left( { - {x^2} + 4x - 4 - {x^2} + 4x - 2} \right)} dx \cr & A = \int_0^1 {\left( {2{x^2} - 8x + 6} \right)} dx + \int_1^3 {\left( {8x - 6 - 2{x^2}} \right)} dx \cr & {\text{Integrate}} \cr & A = \left[ {\frac{{2{x^3}}}{3} - 4{x^2} + 6x} \right]_0^1 + \left[ {4{x^2} - 6x - \frac{{2{x^3}}}{3}} \right]_1^3 \cr & A = \left[ {\frac{{2{{\left( 1 \right)}^3}}}{3} - 4{{\left( 1 \right)}^2} + 6\left( 1 \right)} \right] + \left[ {4{{\left( 3 \right)}^2} - 6\left( 3 \right) - \frac{{2{{\left( 3 \right)}^3}}}{3}} \right] \cr & - \left[ {4{{\left( 1 \right)}^2} - 6\left( 1 \right) - \frac{{2{{\left( 1 \right)}^3}}}{3}} \right] \cr & {\text{Simplifying}} \cr & A = \frac{8}{3} + 0 + \frac{8}{3} \cr & A = \frac{{16}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.