Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 36

Answer

$$ y= x^{\frac{1}{3}}+x^{\frac{4}{3}} $$ (a) The critical numbers : $x=\frac{-1}{4} $ and $x=0$ . (b) The function is increasing on interval $ (\frac{-1} {4} , \infty ) $. (c) The function is decreasing on interval $(-\infty , \frac{-1} {4} ) .$

Work Step by Step

$$ y= x^{\frac{1}{3}}+x^{\frac{4}{3}} $$ We find $y^{\prime}(x) $ first, using the product rule and the chain rule. $$ \begin{aligned} y^{\prime}(x) &=\frac{1}{3}x^{\frac{-2}{3}}+\frac{4}{3}x^{\frac{1}{3}}\\ &=\frac{1+4x}{3x^{\frac{2}{3}}} \\ \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $y^{\prime} =0 $. Now, solve the equation $y^{\prime} =0 $ to get $$ \begin{aligned} y^{\prime}(x) =\frac{1+4x}{3x^{\frac{2}{3}}} &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 1+4x &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 4x &=-1 \\ \Rightarrow\quad\quad\quad\quad\quad\\ x &=\frac{-1}{4} \end{aligned} $$ Next, we find any values of $x$ where $y^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $y^{\prime}(x) $ is $0$, here we observe that the denominator $3x^{\frac{2}{3}}$ equal to 0, when $x=0$ So, (a) The critical numbers : $x=\frac{-1}{4} $ and $x=0$ . We can still apply the first derivative test, however, to find where $y$ is increasing and decreasing. Now, check the sign of $y^{\prime}(x)$. in the intervals $$ (-\infty, \frac{-1} {4} ), \quad (\frac{-1} {4} ,0 ) \quad \text {and }\quad ( 0 , \infty) . $$ (1) Test a number in the interval $(-\infty, \frac{-1} {4} ) $ say $-1 $: $$ \begin{aligned} y^{\prime}(-1) &=\frac{1+4(-1)}{3(-1)^{\frac{2}{3}}}\\ &=-1 \\ & \lt 0 \end{aligned} $$ we see that $y^{\prime}(x)$ is negative in that interval, so $y(x)$ is decreasing on $(-\infty, \frac{-1} {4} )$. (2) Test a number in the interval $(\frac{-1} {4} , 0 ) $ say $ \frac{-1} {8}$: $$ \begin{aligned} y^{\prime}(\frac{-1} {8}) &=\frac{1+4(\frac{-1}{8})}{3(\frac{-1}{8})^{\frac{2}{3}}}\\ &=\frac{2}{3}\\ &\gt 0 \end{aligned} $$ we see that $y^{\prime}(x)$ is positive in that interval, so $y(x)$ is increasing on $( \frac{-1} {4} , 0 ) $. (3) Test a number in the interval $( 0 , \infty ) $ say $1$: $$ \begin{aligned} y^{\prime}(1) &=\frac{1+4(1)}{3(1)^{\frac{2}{3}}}\\ &=\frac{5}{3} \\ &\gt 0 \end{aligned} $$ we see that $y^{\prime}(x)$ is positive in that interval, so $y(x)$ is increasing on $ ( 0 , \infty ) $. So, b) The function is increasing , on intervals $ (\frac{-1} {4} ,0 ) $ and $ (0, \infty ) $. Since $y(0)$ is defined then, the function is increasing on interval $ (\frac{-1} {4} , \infty ) $. (c) The function is decreasing on interval $(-\infty , \frac{-1} {4} ) .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.