Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 13

Answer

(a) The critical number is : $\frac{17}{12}$, (b) The function is increasing in interval $(-\infty, \frac{17}{12} ),$ (c) The function is decreasing in interval $(\frac{17}{12} ,\infty ).$

Work Step by Step

$$ y=2.3 +3.4x-1.2 x^{2} $$ First, find the points where the derivative $y^{\prime }$ is $0$ Here $$ \begin{aligned} y^{\prime}(x) &=3.4-1.2 (2)x\\ &=3.4-2.4 x\\ \end{aligned} $$ Solve the equation $y^{\prime}(x) =0 $ to get $$ \begin{aligned} y^{\prime}(x) & =3.4-2.4 x=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 3.4-2.4 x=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ -2.4 x &=-3.4 \\ x &=\frac{-3.4}{-2.4}=\frac{17}{12}\\ \end{aligned} $$ (a) The critical number is : $\frac{17}{12}$. Now, we can use the first derivative test. Check the sign of $y^{\prime}(x)$ in the intervals $$ (-\infty, \frac{17}{12} ), \quad (\frac{17}{12},\infty). $$ (1) Test a number in the interval $(-\infty, \frac{17}{12} )$ say $0$: $$ \begin{aligned} y^{\prime}(0) =3.4-2.4 (0) \\ &=3.4 \\ &\gt 0 \end{aligned} $$ to see that $ y^{\prime}(x)$ is positive in that interval, so $y(x)$ is increasing on $(-\infty, \frac{17}{12} )$ (2) Test a number in the interval $(\frac{17}{12} , \infty )$ say $2$: $$ \begin{aligned} y^{\prime}(2) =3.4-2.4 (2) \\ &=3.4-4.8 \\ &=-1.4 \\ & \lt 0 \end{aligned} $$ to see that $ y^{\prime}(x)$ is negative in that interval, so $y(x)$ is decreasing on $(\frac{17}{12} , \infty ).$ (b) The function is increasing in interval $(-\infty, \frac{17}{12} )$ (c) The function is decreasing in interval $(\frac{17}{12} ,\infty )$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.