Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 19

Answer

$$ f(x)=x^{4}+4 x^{3}+4x^{2}+1 $$ (a) The critical numbers are: $-2 , -1,$ and $0$. (b) The function is increasing on interval $(-2, -1 ) \text { and } (0, \infty). $ (c) The function is decreasing on interval $(-\infty, -2 ) \text { and } (-1, 0). $

Work Step by Step

$$ f(x)=x^{4}+4 x^{3}+4x^{2}+1 $$ First, find the points where the derivative $f^{\prime }$ is $0$. Here $$ \begin{aligned} f^{\prime}(x) &=(4)x^{3}+4 (3)x^{2}+4 (2)x \\ &=4x^{3}+12x^{2}+8x\\ &=4x( x^{2}+3 x+2) \\ \end{aligned} $$ Solve the equation $f^{\prime}(x) =0 $ to get $$ \begin{aligned} f^{\prime}(x) =4x( x^{2}+3 x+2)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ f^{\prime}(x)=4x(x+2)(x+1)&=0 \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ x =-1 , \quad x =0, \quad &\text {and} \quad x =-2 \\ \end{aligned} $$ (a) The critical numbers are: $-2 , -1,$ and $0$. Now, we can use the first derivative test. Check the sign of $f^{\prime}(x)$ in the intervals $$ (-\infty, -2 ), \quad ( -2, -1), \quad ( -1, 0),\quad \text {and } ( 0, \infty) . $$ (1) Test a number in the interval $(-\infty, -2)$ say $-3$: $$ \begin{aligned} f^{\prime}(-3) &=4(-3)( (-3)^{2}+3 (-3)+2) \\ &=-24 \\ & \lt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, -2 )$ (2) Test a number in the interval $( -2, -1)$ say $-\frac{3}{2}$: $$ \begin{aligned} f^{\prime}(-\frac{3}{2}) &=4(-\frac{3}{2})( (-\frac{3}{2})^{2}+3 (-\frac{3}{2})+2) \\ &=\frac{3}{2} \\ & \gt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is decreasing on $( -2 , -1),$ (3) Test a number in the interval $(-1,0)$ say $-\frac{1}{2}$: $$ \begin{aligned} f^{\prime}(-\frac{1}{2}) &=4(-\frac{1}{2})( (-\frac{1}{2})^{2}+3 (-\frac{1}{2})+2) \\ &=-\frac{3}{2} \\ & \lt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-1, 0 ) .$ (4) Test a number in the interval $(0, \infty)$ say $1$: $$ \begin{aligned} f^{\prime}(1) &=4(1)( (1)^{2}+3 (1)+2) \\ &=24 \\ & \gt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(0, \infty ) .$ So, (b) The function is increasing on interval $(-2, -1 ) \text { and } (0, \infty), $ (c) The function is decreasing on interval $(-\infty, -2 ) \text { and } (-1, 0). $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.