Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 20

Answer

$$ f(x)=3x^{4}+8 x^{3}-18x^{2}+5 $$ (a) The critical numbers are: $-3 , 1,$ and $0$. (b) The function is increasing on intervals $(-3, 0 ) \text { and } (1, \infty).$ (c) The function is decreasing on intervals $(-\infty, -3 ) \text { and } (0, 1). $

Work Step by Step

$$ f(x)=3x^{4}+8 x^{3}-18x^{2}+5 $$ First, find the points where the derivative $f^{\prime }$ is $0$. Here $$ \begin{aligned} f^{\prime}(x) &=3 (4)x^{3}+8 (3) x^{2}-18 (2)x \\ &=12x^{3}+24 x^{2}-36x \\ &=12x( x^{2}+2 x-3) \\ \end{aligned} $$ Solve the equation $f^{\prime}(x) =0 $ to get $$ \begin{aligned} f^{\prime}(x) =12x( x^{2}+2 x-3)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ f^{\prime}(x)=12x(x+3)(x-1)&=0 \\ \Rightarrow\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ x =1 , \quad x =0, \quad &\text {and} \quad x =-3 \\ \end{aligned} $$ (a) The critical numbers are: $-3 , 1,$ and $0$. Now, we can use the first derivative test. Check the sign of $f^{\prime}(x)$ in the intervals $$ (-\infty, -3 ), \quad ( -3, 0), \quad ( 0, 1),\quad \text {and } ( 1, \infty) . $$ (1) Test a number in the interval $(-\infty, -3)$ say $-4$: $$ \begin{aligned} f^{\prime}(-4) &=12(-4)( (-4)^{2}+2 (-4)-3) \\ &=-240 \\ & \lt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, -3 )$ (2) Test a number in the interval $( -3, 0)$ say $-1$: $$ \begin{aligned} f^{\prime}(-1) &=12(-1)( (-1)^{2}+2 (-1)-3) \\ &=48\\ & \gt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $( -3 , 0),$ (3) Test a number in the interval $(0, 1)$ say $\frac{1}{2}$: $$ \begin{aligned} f^{\prime}(\frac{1}{2}) &=12(\frac{1}{2})( (\frac{1}{2})^{2}+2 (\frac{1}{2})-3) \\ &=-\frac{21}{2}\\ & \lt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(0, 1 ) .$ (4) Test a number in the interval $(1, \infty)$ say $2$: $$ \begin{aligned} f^{\prime}(2) &=12(2)( (2)^{2}+2 (2)-3) \\ &=120 \\ & \gt 0 \end{aligned} $$ to see that $ f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(1, \infty ) .$ So, (b) The function is increasing on intervals $(-3, 0 ) \text { and } (1, \infty), $ (c) The function is decreasing on intervals $(-\infty, -3 ) \text { and } (0, 1). $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.