Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 35

Answer

$$ f(x)= x^{\frac{2}{3}}-x^{\frac{5}{3}} $$ (a) The critical numbers : $x=\frac{2}{5} $ and $x=0$ . (b) The function is increasing , on interval $ (0, \frac{2} {5} ). $ (c) The function is decreasing on intervals $(-\infty , 0) $ and $ ( \frac{2} {5} , \infty ) .$

Work Step by Step

$$ f(x)= x^{\frac{2}{3}}-x^{\frac{5}{3}} $$ We find $f^{\prime}(x) $ first, using the product rule and the chain rule. $$ \begin{aligned} f^{\prime}(x) &=\frac{2}{3} x^{\frac{-1}{3}}- \frac{5}{3}x^{\frac{2}{3}} \\ &=\frac{2-5x}{3x^{\frac{1}{3}}} \\ \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{2-5x}{3x^{\frac{1}{3}}} &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 2-5x &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 5x &=2 \\ \Rightarrow\quad\quad\quad\quad\quad\\ x &=\frac{2}{5} \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $3x^{\frac{1}{3}}$ equal to 0, when $x=0$ So, (a) The critical numbers : $x=\frac{2}{5} $ and $x=0$ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, 0 ), \quad (0 , \frac{2} {5} ) \quad \text {and }\quad ( \frac{2} {5} , \infty) . $$ (1) Test a number in the interval $(-\infty, 0) $ say $-1$: $$ \begin{aligned} f^{\prime}(-1) &=\frac{2-5(-1)}{3(-1)^{\frac{1}{3}}} \\ &=-\frac{7}{3} \\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, 0)$. (2) Test a number in the interval $(0 , \frac{2} {5} ) $ say $ \frac{1} {5}$: $$ \begin{aligned} f^{\prime}( \frac{1}{5}) &=\frac{2-5( \frac{1}{5})}{3( \frac{1}{5})^{\frac{1}{3}}} \\ &=\frac{5^{\frac{1}{3}}}{3} \\ &\approx 0.569 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(0 , \frac{2} {5} ) $. (3) Test a number in the interval $( \frac{2} {5} , \infty ) $ say $1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{2-5( 1)}{3( 1)^{\frac{1}{3}}} \\ &=-1 \\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $ ( \frac{2} {5} , \infty ) $. So, b) The function is increasing , on interval $ (0, \frac{2} {5} ). $ (c) The function is decreasing on intervals $(-\infty , 0) $ and $ ( \frac{2} {5} , \infty ) .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.