Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 33

Answer

$$ f(x)=x^{2}2^{-x} $$ (a) The critical numbers only : $x=0$ and $x=\frac{2}{ \ln 2} \approx 2.885$ . b) The function is increasing , on interval $ (0,\frac{2}{ \ln 2} ). $ (c) The function is decreasing on intervals $(-\infty ,0 )$ and $(\frac{2}{ \ln 2} , \infty ) .$

Work Step by Step

$$ f(x)=x^{2}2^{-x} $$ We find $f^{\prime}(x) $ first, using the product rule and the chain rule. $$ \begin{aligned} f^{\prime}(x) &=x^{2}\left[\ln 2\left(2^{-x}\right)(-1)\right]+\left(2^{-x}\right) 2 x \\ &=2^{-x}\left(-x^{2} \ln 2+2 x\right) \\ &=\frac{x(2-x \ln 2)}{2^{x}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{x(2-x \ln 2)}{2^{x}}&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x(2-x \ln 2)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\\ x =0 \quad\text {or } &\quad x =\frac{2}{ \ln 2} \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $2^{ x}$ does not equal to 0. So, (a) The critical numbers only : $x=0$ and $x=\frac{2}{ \ln 2} \approx 2.885$ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, 0), \quad ( 0 , \frac{2}{ \ln 2} ) \quad \text {and }\quad (\frac{2}{ \ln 2}, \infty) . $$ (1) Test a number in the interval $(-\infty, 0) $ say $-1$: $$ \begin{aligned} f^{\prime}(-1) &=\frac{(-1)(2-(-1) \ln 2)}{2^{(-1)}}\\ &=-2\left(2+\ln \left(2\right)\right) \\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, 0 )$. (2) Test a number in the interval $(0, \frac{2}{ \ln 2} ) $ say $1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{(1)(2-(1) \ln 2)}{2^{(1)}}\\ &=\frac{2-\ln \left(2\right)}{2} \approx \:0.6534\\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(0, \frac{2}{ \ln 2} )$. (3) Test a number in the interval $( \frac{2}{ \ln 2} , \infty ) $ say $3$: $$ \begin{aligned} f^{\prime}(3) &=\frac{(3)(2-(3) \ln 2)}{2^{(3)}}\\ &=\frac{3\left(2-3\ln \left(2\right)\right)}{8} \approx -0.02979\\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $( \frac{2}{ \ln 2} , \infty ) $. So, b) The function is increasing , on interval $ (0,\frac{2}{ \ln 2} ). $ (c) The function is decreasing on intervals $(-\infty ,0 )$ and $ (\frac{2}{ \ln 2} , \infty ) .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.