Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 26

Answer

$$ y=x\sqrt {9-x^{2}} $$ (a) The critical numbers are $x=3,-3, -\frac{ 3}{\sqrt {2}} $ and $\frac{ 3}{\sqrt {2}} $ . (b) The function is increasing , on interval $(-\frac{ 3}{\sqrt {2}} , \frac{ 3}{\sqrt {2}} ) $. (c) The function is decreasing on intervals $(-3 , -\frac{ 3}{\sqrt {2}})$ , and $(\frac{ 3}{\sqrt {2}} , 3)$ .

Work Step by Step

$$ y=x\sqrt {9-x^{2}} $$ Notice that the function $f$ does not exist for $9-x^{2} \lt 0 $ ,So the function $f$ is defined on interval $[-3,3]$. We find $y^{\prime} $ first, using the product rule. $$ \begin{aligned} y^{\prime}=&(1)\left(9-x^{2}\right)^{1 / 2} \\ &+\frac{1}{2}\left(9-x^{2}\right)^{-1 / 2}(-2 x)(x) \\ =&\left(9-x^{2}\right)^{1 / 2}-x^{2}\left(9-x^{2}\right)^{-1 / 2} \\ =&\left(9-x^{2}\right)^{-1 / 2}\left(9-x^{2}-x^{2}\right) \\ =&\left(9-x^{2}\right)^{-1 / 2}\left(9-2 x^{2}\right) \\ =& \frac{9-2 x^{2}}{\sqrt{9-x^{2}}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $y^{\prime} =0 $. Now, solve the equation $y^{\prime} =0 $ to get $$ \begin{aligned} y^{\prime} &=\frac{9-2 x^{2}}{\sqrt{9-x^{2}}}=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 9-2 x^{2}&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\\ x =\frac{ 3}{\sqrt {2}} \quad\text {or } &\quad x =\frac{ -3}{\sqrt {2}} \end{aligned} $$ Next, we find any values of $x$ where fails to exist. This occurs whenever the denominator of $y^{\prime}$ is $0$, so set the denominator equal to $0$. and solve. $$ \begin{aligned} \sqrt{9-x^{2}}&=0\\ 9-x^{2}&=0\\ x^{2}&=9\\ \Rightarrow\quad\quad x =3 \quad\text {or } &\quad x =-3 \end{aligned} $$ So, (a) The critical numbers are $x=3,-3, -\frac{ 3}{\sqrt {2}} $ and $\frac{ 3}{\sqrt {2}} $ . Now, we can use the first derivative test. Check the sign of $y^{\prime}(x)$.in the intervals $$ (-3, -\frac{ 3}{\sqrt {2}} ), \quad ( -\frac{ 3}{\sqrt {2}} , \frac{ 3}{\sqrt {2}}), \quad \text {and }\quad ( \frac{ 3}{\sqrt {2}}, 3) . $$ (1) Test a number in the interval $(-3, -\frac{ 3}{\sqrt {2}} ) $ say $-\frac{5}{2}$: $$ \begin{aligned} f^{\prime}(-\frac{5}{2}) &=\frac{9-2(-\frac{5}{2})^{2}}{\sqrt{9-(-\frac{5}{2})^{2}}}\\ &=-\frac{7\sqrt{11}}{11} \approx -2.1106 \\ & \lt 0 \end{aligned} $$ to see that $y^{\prime}(x)$ is negative in that interval, so $y(x)$ is decreasing on $(-3, -\frac{ 3}{\sqrt {2}} )$. (2) Test a number in the interval $(-\frac{ 3}{\sqrt {2}} , \frac{ 3}{\sqrt {2}} ) $ say $0$: $$ \begin{aligned} f^{\prime}(0) &=\frac{9-2(0)^{2}}{\sqrt{9-(0)^{2}}}\\ &=3\\ &\gt 0 \end{aligned} $$ to see that $y^{\prime}(x)$ is positive in that interval, so $y(x)$ is increasing on $(-\frac{ 3}{\sqrt {2}} , \frac{ 3}{\sqrt {2}} ) $. (3) Test a number in the interval $(\frac{ 3}{\sqrt {2}} , 3 ) $ say $\frac{5}{2}$: $$ \begin{aligned} f^{\prime}(\frac{5}{2}) &=\frac{9-2(\frac{5}{2})^{2}}{\sqrt{9-(\frac{5}{2})^{2}}}\\ &=-\frac{7\sqrt{11}}{11} \approx -2.1106 \\ & \lt 0 \end{aligned} $$ to see that $y^{\prime}(x)$ is negative in that interval, so $y(x)$ is decreasing on $(\frac{ 3}{\sqrt {2}} , 3)$. So, (b) The function is increasing , on interval $(-\frac{ 3}{\sqrt {2}} , \frac{ 3}{\sqrt {2}} ) $. (c) The function is decreasing on intervals $(-3 , -\frac{ 3}{\sqrt {2}})$ , and $(\frac{ 3}{\sqrt {2}} , 3)$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.