Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 32

Answer

$$ f(x)=xe^{x^{2}-3x} $$ (a) The critical numbers : $x=\frac{1}{2} $ and $x=1 $ . b) The function is increasing , on intervals $(-\infty, \frac{1}{2}) , (1, \infty ). $ (c) The function is decreasing on interval $(\frac{1}{2} ,1).$

Work Step by Step

$$ f(x)=xe^{x^{2}-3x} $$ We find $f^{\prime}(x) $ first, using the product rule and the chain rule. $$ \begin{aligned} f^{\prime} &=x e^{x^{2}-3 x}(2 x-3)+e^{x^{2}-3 x} (1) \\ &=e^{x^{2}-3 x}[x(2 x-3)+1] \\ &=e^{x^{2}-3 x}\left(2 x^{2}-3 x+1\right) \\ &=e^{x^{2}-3 x}(2 x-1)(x-1) \\ \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime} &=e^{x^{2}-3 x}(2 x-1)(x-1)=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ (2 x-1)(x-1)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\\ x =\frac{ 1}{2} \quad\text {or } &\quad x =1 \end{aligned} $$ So, (a) The critical numbers : $x=\frac{1}{2} $ and $x=1 $ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, \frac{ 1}{2} ), \quad ( \frac{ 1}{2} , 1), \quad \text {and }\quad ( 1, \infty) . $$ (1) Test a number in the interval $(-\infty, \frac{ 1}{2} ) $ say $0$: $$ \begin{aligned} f^{\prime}(0) &=e^{(0)^{2}-3 (0)}(2 (0)-1)((0)-1)\\ &=1 \\ & \gt 0 \end{aligned} $$ to see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty, \frac{ 1}{2} )$. (2) Test a number in the interval $( \frac{ 1}{2}, 1 ) $ say $0.6$: $$ \begin{aligned} f^{\prime}(0.6) &=e^{(0.6)^{2}-3 (0.6)}(2 (0.6)-1)((0.6)-1)\\ &=e^{-1.44}(0.2)(-0.4) \\ &=-\frac{0.08}{e^{1.44}}\\ & \lt 0 \end{aligned} $$ to see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $( \frac{ 1}{2} ,1 )$. (3) Test a number in the interval $( 1, \infty ) $ say $2$: $$ \begin{aligned} f^{\prime}(2) &=e^{(2)^{2}-3 (2)}(2 (2)-1)((2)-1)\\ &=\frac{3}{e^2}\\ & \gt 0 \end{aligned} $$ to see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(1, \infty )$. So, b) The function is increasing , on intervals $(-\infty, \frac{1}{2}) , (1, \infty ). $ (c) The function is decreasing on interval $(\frac{1}{2} ,1).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.