Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 260: 34

Answer

$$ f(x)=x 2^{-x^{2}} $$ (a) The critical numbers only : $x=\frac{1} {\sqrt {2\ln 2}}\approx 0.8493 $ and $x=-\frac{1} {\sqrt {2\ln 2}} $ . b) The function is increasing , on interval $ (- \frac{1} {\sqrt {2\ln 2}} , \frac{1} {\sqrt {2\ln 2}} ). $ (c) The function is decreasing on intervals $(-\infty , - \frac{1} {\sqrt {2\ln 2}} ) $ and $ ( \frac{1} {\sqrt {2\ln 2}} , \infty ).$

Work Step by Step

$$ f(x)=x 2^{-x^{2}} $$ We find $f^{\prime}(x) $ first, using the product rule and the chain rule. $$ \begin{aligned} f^{\prime}(x) &=x\left[\ln 2\left(2^{-x^{2}}(-2 x)\right)\right]+\left(2^{-x^{2}}\right) \\ &=2^{-x^{2}}\left(-2 x^{2} \ln 2+1\right) \\ &=\frac{1-2 x^{2} \ln 2}{2^{x}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{1-2 x^{2} \ln 2}{2^{x}}&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 1-2 x^{2} \ln 2 &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ 2 x^{2} \ln 2 &=1 \\ \Rightarrow\quad\quad\quad\quad\quad\\ x^{2} &=\frac{1}{2\ln 2} \\ \Rightarrow\quad\quad\quad\quad\quad\\ x =\frac{1} {\sqrt {2\ln 2}} \quad\text {or } &\quad x =-\frac{1} {\sqrt {2\ln 2}} \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $2^{ x}$ does not equal to 0. So, (a) The critical numbers only : $x=\frac{1} {\sqrt {2\ln 2}}\approx 0.8493 $ and $x=-\frac{1} {\sqrt {2\ln 2}}$ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$ in the intervals $$ (-\infty, - \frac{1} {\sqrt {2\ln 2}} ), \quad (- \frac{1} {\sqrt {2\ln 2}} , \frac{1} {\sqrt {2\ln 2}} ) \quad \text {and }\quad ( \frac{1} {\sqrt {2\ln 2}} , \infty) . $$ (1) Test a number in the interval $(-\infty, - \frac{1} {\sqrt {2\ln 2}} ) $ say $-1$: $$ \begin{aligned} f^{\prime}(-1) &=\frac{1-2 (-1)^{2} \ln 2}{2^{(-1)}}\\ &=2\left(1-2\ln \left(2\right)\right) \\ & \approx -0.77258\\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty, - \frac{1} {\sqrt {2\ln 2}} )$. (2) Test a number in the interval $(- \frac{1} {\sqrt {2\ln 2}}, \frac{1} {\sqrt {2\ln 2}} ) $ say $0$: $$ \begin{aligned} f^{\prime}(0) &=\frac{1-2 (0)^{2} \ln 2}{2^{(0)}}\\ &=1 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(- \frac{1} {\sqrt {2\ln 2}}, \frac{1} {\sqrt {2\ln 2}} ) $. (3) Test a number in the interval $( \frac{1} {\sqrt {2\ln 2}} , \infty ) $ say $1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{1-2 (1)^{2} \ln 2}{2^{(1)}}\\ &=\frac{1-2\ln \left(2\right)}{2} \\ & \approx -0.1931\\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $ ( \frac{1} {\sqrt {2\ln 2}} , \infty ) $. So, b) The function is increasing , on interval $ (- \frac{1} {\sqrt {2\ln 2}} , \frac{1} {\sqrt {2\ln 2}} ). $ (c) The function is decreasing on intervals $(-\infty , - \frac{1} {\sqrt {2\ln 2}} ) $ and $ ( \frac{1} {\sqrt {2\ln 2}} , \infty ).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.