Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 9

Answer

$$\ln \left| {x + \sqrt {{x^2} - 25} } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt {{x^2} - 25} }}} dx \cr & {\text{Using the substitution }}x = 5\sec \theta \cr & x = 5\sec \theta ,{\text{ }}dx = 5\sec \theta \tan \theta d\theta \cr & {\text{Substitute}} \cr & \int {\frac{1}{{\sqrt {{x^2} - 25} }}} dx = \int {\frac{{5\sec \theta \tan \theta }}{{\sqrt {{{\left( {5\sec \theta } \right)}^2} - 25} }}} d\theta \cr & = \int {\frac{{5\sec \theta \tan \theta }}{{\sqrt {25{{\sec }^2}\theta - 25} }}} d\theta \cr & = \int {\frac{{5\sec \theta \tan \theta }}{{\sqrt {25\left( {{{\sec }^2}\theta - 1} \right)} }}} d\theta \cr & {\text{Use the pythagorean identity }}{\tan ^2}\theta + 1 = {\sec ^2}\theta \cr & = \int {\frac{{5\sec \theta \tan \theta }}{{\sqrt {25{{\tan }^2}\theta } }}} d\theta \cr & = \int {\frac{{5\sec \theta \tan \theta }}{{5\tan \theta }}} d\theta \cr & = \int {\sec \theta } d\theta \cr & {\text{Integrating, recall that }}\int {\sec x} dx = \ln \left| {\sec x + \tan x} \right| + C \cr & = \ln \left| {\sec \theta + \tan \theta } \right| + C \cr & {\text{Where }}\sec \theta = \frac{x}{5}{\text{ and tan}}\theta = \frac{{\sqrt {{x^2} - 25} }}{5} \cr & = \ln \left| {\frac{x}{5} + \frac{{\sqrt {{x^2} - 25} }}{5}} \right| + C \cr & = \ln \left| {\frac{{x + \sqrt {{x^2} - 25} }}{5}} \right| + C \cr & = \ln \left| {x + \sqrt {{x^2} - 25} } \right| - \ln \left( 5 \right) + C \cr & {\text{Combine constants}} \cr & = \ln \left| {x + \sqrt {{x^2} - 25} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.