Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 41

Answer

$\sqrt 3-\frac{\pi}{3}$

Work Step by Step

$\int_{0}^{\frac{\sqrt 3}{2}}\frac{t^{2}}{(1-t^{2})^\frac{3}{2}}dt$ $let$ $t=sinθ$ $dt=cosθdθ$ $0=sinθ$ $θ=0$ $\frac{\sqrt 3}{2}=sinθ$ $θ=\frac{\pi}{3}$ $\int_{0}^{\frac{\pi}{3}}\frac{sin^{2}θ}{(1-sin^{2}θ)^\frac{3}{2}}(cosθ)dθ$ Through the Pythagorean identity $sin^{2}θ+cos^{2}θ=1$, $1-sin^{2}θ=cos^{2}θ$: $\int_{0}^{\frac{\pi}{3}}\frac{sin^{2}θcosθ}{(cos^{2}θ)^\frac{3}{2}}dθ$ $\int_{0}^{\frac{\pi}{3}}\frac{sin^{2}θcosθ}{cos^{3}θ}dθ$ $\int_{0}^{\frac{\pi}{3}}\frac{sin^{2}θ}{cos^{2}θ}dθ$ $\int_{0}^{\frac{\pi}{3}}tan^{2}θdθ$ Through the Pythagorean identity $tan^{2}θ+1=sec^{2}θ$, $tan^{2}θ=sec^{2}θ-1$ $\int_{0}^{\frac{\pi}{3}}(sec^{2}θ-1)dθ$ $[tanθ-θ]_{0}^{\frac{\pi}{3}}$ $[tan(\frac{\pi}{3})-\frac{\pi}{3}-(tan0-0)]$ $\sqrt 3-\frac{\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.