Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 21

Answer

$${\sin ^{ - 1}}\left( {\frac{x}{4}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{\sqrt {16 - {x^2}} }}} dx \cr & {\text{Refer to the triangle below}} \cr & \sin \theta = \frac{x}{4} \cr & x = 4\sin \theta ,{\text{ }}dx = 4\cos \theta d\theta ,{\text{ }} \cr & {\text{Substituting}} \cr & \int {\frac{1}{{\sqrt {16 - {x^2}} }}} dx = \int {\frac{1}{{\sqrt {16 - {{\left( {4\sin \theta } \right)}^2}} }}} \left( {4\cos \theta } \right)d\theta \cr & = \int {\frac{1}{{\sqrt {16 - 16{{\sin }^2}\theta } }}} \left( {4\cos \theta } \right)d\theta \cr & = \int {\frac{1}{{\sqrt {16\left( {1 - {{\sin }^2}\theta } \right)} }}} \left( {4\cos \theta } \right)d\theta \cr & = \int {\frac{1}{{\sqrt {16{{\cos }^2}\theta } }}} \left( {4\cos \theta } \right)d\theta \cr & = \int {\frac{1}{{4\cos \theta }}} \left( {4\cos \theta } \right)d\theta \cr & = \int {d\theta } \cr & {\text{Integrating}} \cr & = \theta + C \cr & x = 4\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{x}{4}} \right) + C \cr & = {\sin ^{ - 1}}\left( {\frac{x}{4}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.