Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 30

Answer

$$\frac{x}{{5\sqrt {{x^2} + 5} }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{{\left( {{x^2} + 5} \right)}^{3/2}}}}} dx \cr & {\text{Refer to the triangle below}} \cr & \tan \theta = \frac{x}{{\sqrt 5 }},{\text{ }}x = \sqrt 5 \tan \theta ,{\text{ }}dx = \sqrt 5 {\sec ^2}\theta d\theta \cr & \int {\frac{1}{{{{\left( {{x^2} + 5} \right)}^{3/2}}}}} dx = \int {\frac{{\sqrt 5 {{\sec }^2}\theta d\theta }}{{{{\left( {{{\left( {\sqrt 5 \tan \theta } \right)}^2} + 5} \right)}^{3/2}}}}} \cr & = \int {\frac{{\sqrt 5 {{\sec }^2}\theta }}{{{{\left( {5{{\tan }^2}\theta + 5} \right)}^{3/2}}}}} d\theta \cr & = \int {\frac{{\sqrt 5 {{\sec }^2}\theta }}{{{5^{3/2}}{{\left( {{{\tan }^2}\theta + 1} \right)}^{3/2}}}}} d\theta \cr & = \int {\frac{{\sqrt 5 {{\sec }^2}\theta }}{{{5^{3/2}}{{\left( {{{\sec }^2}\theta } \right)}^{3/2}}}}} d\theta \cr & = \frac{1}{5}\int {\frac{1}{{\sec \theta }}} d\theta \cr & = \frac{1}{5}\int {\cos \theta } d\theta \cr & {\text{Integrate, }} \cr & = \frac{1}{5}\sin \theta + C \cr & {\text{Refer to the triangle, }}\sin \theta = \frac{x}{{\sqrt {{x^2} + 5} }} \cr & = \frac{1}{5}\left( {\frac{x}{{\sqrt {{x^2} + 5} }}} \right) + C \cr & = \frac{x}{{5\sqrt {{x^2} + 5} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.