Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 44

Answer

$\frac{9\pi}{20}$

Work Step by Step

$\int_{0}^{\frac{3}{5}}\sqrt (9-25x^{2})dx$ $let$ $x=\frac{3}{5}sinθ$ $dx=\frac{3}{5}cosθdθ$ $\frac{3}{5}=\frac{3}{5}sinθ$ $1=sinθ$ $θ=\frac{\pi}{2}$ $0=\frac{3}{5}sinθ$ $0=sinθ$ $θ=0$ $\int_{0}^{\frac{\pi}{2}}\sqrt (9-25(\frac{9}{25}sin^{2}θ))(\frac{3}{5}cosθ)dθ$ $\int_{0}^{\frac{\pi}{2}}\frac{3}{5}cosθ\sqrt (9-9sin^{2}θ)dθ$ $\int_{0}^{\frac{\pi}{2}}3(\frac{3}{5}cosθ)\sqrt (1-sin^{2}θ)dθ$ Through the Pythagorean identity $sin^{2}θ+cos^{2}θ=1$, $1-sin^{2}θ=cos^{2}θ$: $\int_{0}^{\frac{\pi}{2}}\frac{9}{5}cosθ\sqrt (cos^{2}θ)dθ$ $\int_{0}^{\frac{\pi}{2}}\frac{9}{5}cos^{2}θdθ$ Through the power reducing formula $cos^{2}θ=\frac{1}{2}+\frac{1}{2}cos2θ$: $\frac{9}{5}\int_{0}^{\frac{\pi}{2}}(\frac{1}{2}+\frac{1}{2}cos2θ)dθ$ $let$ $u=2θ$ $du=2dθ$ $\frac{1}{2}du=2dθ$ $u(0)=0$ $u(\frac{\pi}{2})=\pi$ $(\frac{9}{5})(\frac{1}{2})\int_{0}^{\pi}(\frac{1}{2}+\frac{1}{2}cosu)du$ $\frac{9}{10}[\frac{1}{2}u+\frac{1}{2}sinu]_{0}^{\pi}$ $\frac{9}{10}[\frac{\pi}{2}+\frac{1}{2}sin\pi-(\frac{1}{2}(0)-\frac{1}{2}sin0)]$ $\frac{9}{10}[\frac{\pi}{2}]$ $\frac{9\pi}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.