Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 42

Answer

$2\sqrt 3$

Work Step by Step

$\int_{0}^{\frac{\sqrt 3}{2}}\frac{1}{(1-t^{2})^\frac{5}{2}}dt$ $let$ $t=sinθ$ $dt=cosθdθ$ $0=sinθ$ $θ=0$ $\frac{\sqrt 3}{2}=sinθ$ $θ=\frac{\pi}{3}$ $\int_{0}^{\frac{\pi}{3}}\frac{1}{(1-sin^{2}θ)^\frac{5}{2}}(cosθ)dθ$ Through the Pythagorean identity $sin^{2}θ+cos^{2}θ=1$, $1-sin^{2}θ=cos^{2}θ$: $\int_{0}^{\frac{\pi}{3}}\frac{cosθ}{(cos^{2}θ)^\frac{5}{2}}dθ$ $\int_{0}^{\frac{\pi}{3}}\frac{cosθ}{cos^{5}θ}dθ$ $\int_{0}^{\frac{\pi}{3}}\frac{1}{cos^{4}θ}dθ$ $\int_{0}^{\frac{\pi}{3}}sec^{4}θdθ$ $\int_{0}^{\frac{\pi}{3}}sec^{2}θsec^{2}θdθ$ Through the Pythagorean identity $tan^{2}θ+1=sec^{2}θ$: $\int_{0}^{\frac{\pi}{3}}(tan^{2}θ+1)sec^{2}θdθ$ $let$ $u=tanθ$ $du=sec^{2}θdθ$ $u(0)=0$ $u(\frac{\pi}{3})=\sqrt 3$ $\int_{0}^{\sqrt 3}(u^{2}+1)du$ $[\frac{1}{3}u^{3}+u]_{0}^{\sqrt 3}$ $[\frac{1}{3}(\sqrt 3)^{3}+\sqrt 3-(\frac{1}{3}(0)^{3}+0)]$ $[\sqrt 3+\sqrt 3]$ $2\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.