Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.4 Exercises - Page 539: 12

Answer

$$\frac{1}{3}{\left( {\sqrt {{x^2} - 25} } \right)^3} + 25\sqrt {{x^2} - 25} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3}}}{{\sqrt {{x^2} - 25} }}} dx \cr & {\text{Using substitution }}x = 5\sec \theta \cr & x = 5\sec \theta ,{\text{ }}dx = 5\sec \theta \tan \theta d\theta \cr & {\text{Substitute}} \cr & \int {\frac{{{x^3}}}{{\sqrt {{x^2} - 25} }}} dx = \int {\frac{{{{\left( {5\sec \theta } \right)}^3}}}{{\sqrt {{{\left( {5\sec \theta } \right)}^2} - 25} }}} \left( {5\sec \theta \tan \theta } \right)d\theta \cr & {\text{Simplifying}} \cr & = \int {\frac{{625{{\sec }^4}\theta \tan \theta }}{{\sqrt {25\left( {{{\sec }^2}\theta - 1} \right)} }}} d\theta \cr & = \int {\frac{{625{{\sec }^4}\theta \tan \theta }}{{5\sqrt {{{\sec }^2}\theta - 1} }}} d\theta \cr & {\text{Use the pythagorean identity }}{\tan ^2}\theta + 1 = {\sec ^2}\theta \cr & = \int {\frac{{625{{\sec }^4}\theta \tan \theta }}{{5\sqrt {{{\tan }^2}\theta } }}} d\theta \cr & = 125\int {\frac{{{{\sec }^4}\theta \tan \theta }}{{\tan \theta }}} d\theta \cr & = 125\int {{{\sec }^4}\theta } d\theta \cr & = 125\int {{{\sec }^2}\theta {{\sec }^2}\theta } d\theta \cr & = 125\int {\left( {{{\tan }^2}\theta + 1} \right){{\sec }^2}\theta } d\theta \cr & = 125\int {{{\tan }^2}\theta {{\sec }^2}\theta } d\theta + 125\int {{{\sec }^2}\theta } d\theta \cr & {\text{Integrating}} \cr & = 125\left( {\frac{{{{\tan }^3}\theta }}{3}} \right) + 125\tan \theta + C \cr & {\text{Where }}\sec \theta = \frac{x}{5},{\text{ }}\tan \theta = \frac{{\sqrt {{x^2} - 25} }}{5} \cr & = \frac{{125}}{3}\left( {\frac{{{{\left( {\sqrt {{x^2} - 25} } \right)}^3}}}{{125}}} \right) + 125\left( {\frac{{\sqrt {{x^2} - 25} }}{5}} \right) + C \cr & = \frac{1}{3}{\left( {\sqrt {{x^2} - 25} } \right)^3} + 25\sqrt {{x^2} - 25} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.