Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 54

Answer

$F\left( y \right) = 8\left( {{e^{y/2}} - {e^{ - 1/2}}} \right)$

Work Step by Step

$$\eqalign{ & F\left( y \right) = \int_{ - 1}^y {4{e^{x/2}}} dx \cr & {\text{Integrate}} \cr & F\left( y \right) = 8\left[ {{e^{x/2}}} \right]_{ - 1}^y \cr & F\left( y \right) = 8\left( {{e^{y/2}} - {e^{ - 1/2}}} \right){\text{, }}\left( {{\text{accumulation function}}} \right) \cr & \cr & \left( {\text{a}} \right)F\left( { - 1} \right) \cr & F\left( { - 1} \right) = 8\left( {{e^{ - 1/2}} - {e^{ - 1/2}}} \right) \cr & F\left( { - 1} \right) = 0,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & \left( {\text{b}} \right)F\left( 0 \right) \cr & F\left( 0 \right) = 8\left( {{e^0} - {e^{ - 1/2}}} \right) \cr & F\left( 0 \right) \approx 3.1477,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & \left( {\text{c}} \right)F\left( 4 \right) \cr & F\left( 4 \right) = 8\left( {{e^4} - {e^{ - 1/2}}} \right) \cr & F\left( 4 \right) \approx 54.2602,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & {\text{Graphs}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.