Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 51

Answer

$F\left( x \right) = \frac{{{x^2}}}{4} + x{\text{ }}$

Work Step by Step

$$\eqalign{ & F\left( x \right) = \int_0^x {\left( {\frac{1}{2}t + 1} \right)} dt \cr & {\text{Integrate}} \cr & F\left( x \right) = \left[ {\frac{1}{2}\left( {\frac{{{t^2}}}{2}} \right) + t} \right]_0^x = \left[ {\frac{{{t^2}}}{4} + t} \right]_0^x \cr & F\left( x \right) = \left[ {\frac{{{x^2}}}{4} + x} \right] - \left[ {\frac{{{0^2}}}{4} + 0} \right] \cr & F\left( x \right) = \frac{{{x^2}}}{4} + x{\text{ }}\left( {{\text{accumulation function}}} \right) \cr & \cr & \left( {\text{a}} \right)F\left( 0 \right) \cr & F\left( 0 \right) = \frac{{{{\left( 0 \right)}^2}}}{4} + \left( 0 \right) \cr & F\left( 0 \right) = 0,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & \left( {\text{b}} \right)F\left( 2 \right) \cr & F\left( 2 \right) = \frac{{{{\left( 2 \right)}^2}}}{4} + \left( 2 \right) \cr & F\left( 2 \right) = 3,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & \left( {\text{c}} \right)F\left( 6 \right) \cr & F\left( 6 \right) = \frac{{{{\left( 6 \right)}^2}}}{4} + \left( 6 \right) \cr & F\left( 6 \right) = 15,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & {\text{Graphs}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.