Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 32

Answer

$$A = \frac{{128}}{{15}}$$

Work Step by Step

$$\eqalign{ & y = {x^4} - 2{x^2},{\text{ }}y = 2{x^2} \cr & {\text{Let }}f\left( x \right) = {x^4} - 2{x^2}{\text{ and }}g\left( x \right) = 2{x^2} \cr & {\text{From the graph shown below}} \cr & g\left( x \right) \geqslant f\left( x \right){\text{ on the interval }} - 2 \leqslant x \leqslant 2 \cr & {\text{The enclosed area is given by }} \cr & A = \int_{ - 2}^2 {\left[ {2{x^2} - \left( {{x^4} - 2{x^2}} \right)} \right]dx} \cr & {\text{By symmetry}} \cr & A = 2\int_0^2 {\left[ {2{x^2} - \left( {{x^4} - 2{x^2}} \right)} \right]dx} \cr & A = 2\int_0^2 {\left( {4{x^2} - {x^4}} \right)dx} \cr & {\text{Integrate}} \cr & A = 2\left[ {\frac{{4{x^3}}}{3} - \frac{{{x^5}}}{5}} \right]_0^2 \cr & A = 2\left[ {\frac{{4{{\left( 2 \right)}^3}}}{3} - \frac{{{{\left( 2 \right)}^5}}}{5}} \right] - 2\left[ {\frac{{4{{\left( 0 \right)}^3}}}{3} - \frac{{{{\left( 0 \right)}^5}}}{5}} \right] \cr & {\text{Simplifying}} \cr & A = \frac{{128}}{{15}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.