Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 41

Answer

$$A = \frac{{1 - {e^{ - 1}}}}{2}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = x{e^{ - {x^2}}},{\text{ }}y = \tan x,{\text{ }}0 \leqslant x \leqslant 1 \cr & {\text{From the graph shown below, we can define the enclosed area}} \cr & {\text{as:}} \cr & A = \int_0^1 {x{e^{ - {x^2}}}dx} \cr & A = - \frac{1}{2}\int_0^1 {{e^{ - {x^2}}}\left( { - 2x} \right)dx} \cr & {\text{Integrate and evaluate}} \cr & A = - \frac{1}{2}\left[ {{e^{ - {x^2}}}} \right]_0^1 \cr & A = - \frac{1}{2}\left[ {{e^{ - {{\left( 1 \right)}^2}}} - {e^{ - {{\left( 0 \right)}^2}}}} \right] \cr & A = - \frac{1}{2}\left( {{e^{ - 1}} - 1} \right) \cr & A = \frac{{1 - {e^{ - 1}}}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.