Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 38

Answer

$$A=\frac{3 \sqrt{3}}{4} \approx 1.299$$ Also, see Fig.(1)

Work Step by Step

Given $$ f(x)=\sin x, \quad g(x)=\cos 2 x, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{6} $$ So, the intersection points can be obtained by equating the two function $f(x)=g(x)$, therefore we get $\sin x=\cos 2 x \quad \Rightarrow \sin x=1-2\sin^ 2 x$ $ \Rightarrow 2\sin^ 2 x+\sin x-1=0 \quad \Rightarrow (2 \sin x-1)( \sin x+1)=0$ $ \Rightarrow \sin x=\frac{1}{2}\Rightarrow x=\frac{\pi}{6} \Rightarrow y=\frac{1}{2 }$ and $\sin x=-1\Rightarrow x=-\frac{\pi}{2} \Rightarrow y=-1$ First, we sketch the region bounded by the graphs $f(x)$ and $g(x)$ (see Fig.1) Secondly, we use the integration to find the area of the region $$ \begin{aligned} A &=\int_{-\pi / 2}^{\pi / 6}(g( x)-f(x)) d x\\ &=\int_{-\pi / 2}^{\pi / 6}(\cos 2 x-\sin x) d x \\ &=\left[\frac{1}{2} \sin 2 x+\cos x\right]_{-\pi / 2}^{\pi / 6} \\ &=\left(\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{2}\right)-(0)\\ &=\frac{3 \sqrt{3}}{4} \\ &\approx 1.299 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.