Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 53

Answer

$F\left( \alpha \right) = \frac{2}{\pi }\sin \frac{{\pi \alpha }}{2} + \frac{2}{\pi }$

Work Step by Step

$$\eqalign{ & F\left( \alpha \right) = \int_{ - 1}^\alpha {\cos \frac{{\pi \theta }}{2}} d\theta \cr & {\text{Integrate}} \cr & F\left( \alpha \right) = \frac{2}{\pi }\left[ {\sin \frac{{\pi \theta }}{2}} \right]_{ - 1}^\alpha \cr & F\left( \alpha \right) = \frac{2}{\pi }\left[ {\sin \frac{{\pi \alpha }}{2} - \sin \frac{{\pi \left( { - 1} \right)}}{2}} \right] \cr & F\left( \alpha \right) = \frac{2}{\pi }\left[ {\sin \frac{{\pi \alpha }}{2} + 1} \right] \cr & F\left( \alpha \right) = \frac{2}{\pi }\sin \frac{{\pi \alpha }}{2} + \frac{2}{\pi }{\text{ }}\left( {{\text{accumulation function}}} \right) \cr & \cr & \left( {\text{a}} \right)F\left( { - 1} \right) \cr & F\left( { - 1} \right) = \frac{2}{\pi }\sin \frac{{\pi \left( { - 1} \right)}}{2} + \frac{2}{\pi } \cr & F\left( { - 1} \right) = - \frac{2}{\pi } + \frac{2}{\pi }{\text{ }} \cr & F\left( { - 1} \right) = 0,{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & \left( {\text{b}} \right)F\left( 0 \right) \cr & F\left( 0 \right) = \frac{2}{\pi }\sin \frac{{\pi \left( 0 \right)}}{2} + \frac{2}{\pi } \cr & F\left( 0 \right) = \frac{2}{\pi },{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & \left( {\text{c}} \right)F\left( {\frac{1}{2}} \right) \cr & F\left( {\frac{1}{2}} \right) = \frac{2}{\pi }\sin \frac{{\pi \left( {1/2} \right)}}{2} + \frac{2}{\pi } \cr & F\left( {\frac{1}{2}} \right) = \frac{2}{\pi }\left( {\frac{{\sqrt 2 }}{2}} \right) + \frac{2}{\pi } \cr & F\left( {\frac{1}{2}} \right) = \frac{{\sqrt 2 }}{\pi } + \frac{2}{\pi } \cr & F\left( {\frac{1}{2}} \right) = \frac{{2 + \sqrt 2 }}{\pi },{\text{ }}\left( {{\text{Graph shown below}}} \right) \cr & \cr & {\text{Graphs}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.