Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 40

Answer

$A\approx 0.9133$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sec \frac{{\pi x}}{4}\tan \frac{{\pi x}}{4},{\text{ }}g\left( x \right) = \left( {\sqrt 2 - 4} \right)x + 4,{\text{ }}x = 0 \cr & {\text{Find the intersection points between the graphs}} \cr & f\left( x \right) = g\left( x \right) \cr & \sec \left( {\frac{{\pi x}}{4}} \right)\tan \left( {\frac{{\pi x}}{4}} \right) = \left( {\sqrt 2 - 4} \right)x + 4 \cr & {\text{Solving}}{\text{, we obtain }}x = 1{\text{ }} \cr & {\text{From the graph shown below}}{\text{, we can define the enclosed area}} \cr & {\text{as:}} \cr & A = \,\int_0^1 {\sec \left( {\frac{{\pi x}}{4}} \right)\tan \left( {\frac{{\pi x}}{4}} \right)} dx + \,\int_1^{\pi /2} {\left[ {\left( {\sqrt 2 - 4} \right)x + 4} \right]} dx \cr & {\text{Integrate and evaluate}} \cr & A = \,\frac{4}{\pi }\left[ {\sec \left( {\frac{{\pi x}}{4}} \right)} \right]_0^1 + \left[ {\frac{{\left( {\sqrt 2 - 4} \right)}}{2}{x^2} + 4x} \right]_1^{\pi /2} \cr & A = \,\frac{4}{\pi }\left[ {\sec \left( {\frac{\pi }{4}} \right) - \sec \left( 0 \right)} \right] \cr & + \left[ {\frac{{\left( {\sqrt 2 - 4} \right)}}{2}{{\left( {\frac{\pi }{2}} \right)}^2} + 4\left( {\frac{\pi }{2}} \right)} \right] - \left[ {\frac{{\left( {\sqrt 2 - 4} \right)}}{2}{{\left( 1 \right)}^2} + 4\left( 1 \right)} \right] \cr & {\text{Simplifying}} \cr & A = \,\frac{4}{\pi }\left( {\sqrt 2 - 1} \right) + \frac{{\left( {\sqrt 2 - 4} \right)}}{8}{\pi ^2} + 2\pi - \frac{{\left( {\sqrt 2 - 4} \right)}}{2} - 4 \cr & A = \,\frac{4}{\pi }\left( {\sqrt 2 - 1} \right) + \frac{{\left( {\sqrt 2 - 4} \right)}}{8}{\pi ^2} + 2\pi - \frac{{\sqrt 2 }}{2} - 2 \cr & A \approx 0.9133 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.