Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.1 Exercises - Page 443: 36

Answer

$$A = 3\ln 10$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{6x}}{{1 + {x^2}}} \cr & f\left( x \right) \geqslant 0{\text{ on the interval }}0 \leqslant x \leqslant 3 \cr & {\text{From the graph shown below, we can define the area enclosed}} \cr & {\text{as:}} \cr & A = \int_0^3 {\frac{{6x}}{{1 + {x^2}}}} dx \cr & A = 3\int_0^3 {\frac{{2x}}{{1 + {x^2}}}} dx \cr & {\text{Integrate and evaluate}} \cr & A = 3\left[ {\ln \left( {1 + {x^2}} \right)} \right]_0^3 \cr & A = 3\left[ {\ln \left( {1 + {{\left( 3 \right)}^2}} \right) - \ln \left( {1 + {{\left( 0 \right)}^2}} \right)} \right] \cr & A = 3\left[ {\ln \left( {10} \right) - \ln \left( 1 \right)} \right] \cr & A = 3\ln 10 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.