Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 9

Answer

\[0\]

Work Step by Step

\[\begin{align} & \int_{-a}^{a}{\int_{-\sqrt{{{a}^{2}}-{{x}^{2}}}}^{\sqrt{{{a}^{2}}-{{x}^{2}}}}{\left( x+y \right)}}dydx \\ & \text{Integrating }\int_{-\sqrt{{{a}^{2}}-{{x}^{2}}}}^{\sqrt{{{a}^{2}}-{{x}^{2}}}}{\left( x+y \right)}dy \\ & =\left[ xy+\frac{1}{2}{{y}^{2}} \right]_{-\sqrt{{{a}^{2}}-{{x}^{2}}}}^{\sqrt{{{a}^{2}}-{{x}^{2}}}} \\ & =\left[ x\sqrt{{{a}^{2}}-{{x}^{2}}}+\frac{1}{2}{{\left( \sqrt{{{a}^{2}}-{{x}^{2}}} \right)}^{2}} \right]-\left[ -x\sqrt{{{a}^{2}}-{{x}^{2}}}+\frac{1}{2}{{\left( \sqrt{{{a}^{2}}-{{x}^{2}}} \right)}^{2}} \right] \\ & =x\sqrt{{{a}^{2}}-{{x}^{2}}}+\frac{1}{2}\left( {{a}^{2}}-{{x}^{2}} \right)+x\sqrt{{{a}^{2}}-{{x}^{2}}}-\frac{1}{2}\left( {{a}^{2}}-{{x}^{2}} \right) \\ & =2x\sqrt{{{a}^{2}}-{{x}^{2}}} \\ & \text{Then,} \\ & \int_{-a}^{a}{\int_{-\sqrt{{{a}^{2}}-{{x}^{2}}}}^{\sqrt{{{a}^{2}}-{{x}^{2}}}}{\left( x+y \right)}}dydx=\int_{-a}^{a}{2x\sqrt{{{a}^{2}}-{{x}^{2}}}}dx \\ & =-\int_{-a}^{a}{\left( -2x \right)\sqrt{{{a}^{2}}-{{x}^{2}}}}dx \\ & =-\left[ \frac{{{\left( {{a}^{2}}-{{x}^{2}} \right)}^{3/2}}}{3/2} \right]_{-a}^{a} \\ & =-\frac{2}{3}\left[ {{\left( {{a}^{2}}-{{x}^{2}} \right)}^{3/2}} \right]_{-a}^{a} \\ & =-\frac{2}{3}\left[ {{\left( {{a}^{2}}-{{\left( a \right)}^{2}} \right)}^{3/2}}-{{\left( {{a}^{2}}-{{\left( -a \right)}^{2}} \right)}^{3/2}} \right] \\ & =-\frac{2}{3}\left[ 0 \right] \\ & =0 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.