Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 23

Answer

$$V = \frac{3}{8}$$

Work Step by Step

$$\eqalign{ & {\text{The volume of the solid is given by}} \cr & V = \iint\limits_R zdA,{\text{ }}z = 1 - xy \cr & {\text{Let the region be }} \cr & R = \left\{ {\left( {x,y} \right):x \leqslant y \leqslant 1,{\text{ }}0 \leqslant x \leqslant 1} \right\} \cr & V = \iint\limits_R zdA = \int_0^1 {\int_x^1 {\left( {1 - xy} \right)} } dydx \cr & {\text{Integrate with respect to }}y \cr & V = \int_0^1 {\left[ {y - \frac{{x{y^2}}}{2}} \right]_x^1} dx \cr & V = \int_0^1 {\left[ {\left( {1 - \frac{x}{2}} \right) - \left( {x - \frac{{{x^3}}}{2}} \right)} \right]} dx \cr & V = \int_0^1 {\left( {1 - \frac{x}{2} - x + \frac{{{x^3}}}{2}} \right)} dx \cr & V = \int_0^1 {\left( {1 - \frac{{3x}}{2} + \frac{{{x^3}}}{2}} \right)} dx \cr & {\text{Integrate}} \cr & V = \left[ {x - \frac{{3{x^2}}}{4} + \frac{{{x^4}}}{8}} \right]_0^1 \cr & V = \left[ {1 - \frac{{3{{\left( 2 \right)}^2}}}{4} + \frac{{{{\left( 1 \right)}^4}}}{8}} \right] - \left[ 0 \right] \cr & V = \frac{3}{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.