Answer
$\dfrac{225}{4}$
Work Step by Step
First we need to set up the integration then we will solve the integral as follows:
$\int_0^3 \int_0^5 xy \ dy dx=\dfrac{1}{2} \int_0^3 xy^2 \ dx$
or, $=\dfrac{25}{2} \times \int_0^3 x \ dx$
or, $=\dfrac{25}{4} \times [x^2]_0^3$
or, $=\dfrac{25}{4} \times [(3)^2-0]_0^3$
or, $=\dfrac{225}{4}$